
Artificial Intelligence 65 (1994) 1-27 1
Elsevier

ARTINT 1034

A linear constraint satisfaction
approach to cost-based abduction

Eugene Santos Jr
Department of Electrical and Computer Engineering, Air Force Institute of Technology,
AFIT/ENG, 2950 P Street, Wright-Patterson AFB, OH 45433-7765, USA

Received May 1991
Revised October 1992

Abstract

Santos Jr, E., A linear constraint satisfaction approach to cost-based abduction, Artificial
Intelligence 65 (1994) 1-27.

Abduction is the problem of finding the best explanation for a given set of observations.
Within AI, this has been modeled as proving the observation by assuming some set
of hypotheses. Cost-based abduction associates a cost with each hypothesis. The best
proof is the one which assumes the least costly set. Previous approaches to finding the
least cost set have formalized cost-based abduction as a heuristic graph search problem.
However, efficient admissible heuristics have proven difficult to find. In this paper, we
present a new technique for finding least cost sets by using linear constraints to represent
causal relationships. In particular, we are able to recast the problem as a 0-1 integer
linear programming problem. We can then use the highly efficient optimization tools of
operations research yielding a computationally efficient method for solving cost-based
abduction problems. Experiments comparing our linear constraint satisfaction approach
to standard graph searching methodologies suggest that our approach is superior to
existing search techniques in that our approach exhibits an expected-case polynomial
run-time growth rate.

1. In troduct ion

Abduct ive explanation h a s b e e n f o r m a l i z e d in A I as t he p r o c e s s o f s e a r c h i n g

fo r s o m e set o f a s s u m p t i o n s t h a t can p r o v e the t h ings to b e e x p l a i n e d

[2 , 3 , 5 , 9 , 1 0 , 1 4 - 1 6 , 1 9 - 2 1] . W e cal l e ach such set an explanation fo r t he

Correspondence to: E. Santos Jr, Department of Electrical and Computer Engineering, Air
Force Institute of Technology, AFIT/ENG, 2950 P Street, Wright-Patterson AFB, OH 45433-
7765, USA. E-mail: esantos@afit.af.mil.

0004-3702/94/$ 07.00 (~ 1994 - - Elsevier Science B.V. All fights reserved
SSDI 0004-3 7 0 2 (9 2) 0 0 0 6 1 - D

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1992 2. REPORT TYPE

3. DATES COVERED
 00-00-1992 to 00-00-1992

4. TITLE AND SUBTITLE
A linear constraint satisfaction approach to cost-based abduction

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology (AFIT/ENG),Department of Electrical
and Computer Engineering,2950 P Street,Wright-Patterson
AFB,OH,45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

27

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 E. Santos Jr

given evidence. For example, consider the following situation: "John visits
his friend Mary's house and finds that the place is dark and quiet. He
concludes that Mary is not home." John's conclusion is a form of abductive
explanation and cannot be arrived at by purely deductive means.

The information John used to arrive at his conclusion can be described
with the following set of propositions:

house-dark A house-quiet
lights-out
no-one-home V blackout
tv-off A radio-off
no-one-home V no-shows V blackout

==~ house-dark-quiet,
house-dark,

= ¢ lights-out,
=¢ house-quiet,
==~ tv-off,

no-one-home V bad-songs V blackout =:~ radio-off,

where "A", "V", and " ~ " denote conjunction, disjunction, and implication,
respectively. The abductive reasoning task can be viewed as a backward-
chaining process on the propositions. In essence, we are traveling backwards
through the implications in hopes of finding a set of assumptions which can
serve as an explanation for the evidence. For example, assuming that no
one is home is a possible explanation for the house being dark and quiet.

A basic problem which naturally arises in abductive reasoning is that there
may be many different possible explanations available. Using traditional
symbolic logic, the only measure of a set's viability as an explanation is
whether or not the evidence can be deductively inferred from the set. Thus,
even the most far-fetched set of assumptions can be a possible candidate
as long as it proves the evidence. In the above example, the house may
be dark and quiet because of a blackout which in general is a slightly less
plausible possibility. A related, but slightly different problem concerns the
explanation whereby John simply assumes that the house is dark and quiet.
This is a perfectly legitimate answer but provides no useful information.

We can easily see that some preferential ordering on the explanations is
necessary. Early measures based on minimizing the necessary number of
hypotheses [5,10] have been shown to be inadequate [3,9,21] suggesting
the use of a more sophisticated approach. One such approach proposed
by Hobbs and Stickel [1,9,21], called weighted abduction, involves levying
numerical costs on individual assumptions. The cost of an explanation is a
function of the cost of the individual assumptions made in the explanation.
These costs are used in an effort to guide the abductive system towards the
intended explanations. The final choice for best explanation will be the one
with least cost.

Here, we will consider a minor variant of weighted abduction called
cost-based abduction presented in [3]. It has been shown in [3] that belief
revision in Bayesian networks [13] can be accurately modeled by cost-based
abduction.

A linear constraint satisfaction approach to cost-based abduction 3

Fig. 1. A simple WAODAG. The AND-node house-dark-quiet is the observation. The nodes
no-one-home, no-shows, blackout, and bad-songs are the hypotheses with associated costs 7, 6, 10,
and 3, respectively. The assignment of {no-one-home} to true and (bad-songs, blackout,no-shows}
to false results in lights-out, radio-off, tv-off, house-dark, and house-quiet to be true. This proof

has a cost of 7 and is the minimal cost proof.

In cost-based abduction, hypotheses have associated costs, and the cost of
a proof is simply the sum of the costs of the hypotheses required to complete
that proof. Examples of such proofs can be found in [2,3]. Central to this
approach is the use of directed acyclic graphs called WAODAGS (or , weighted
AND/OR directed acyclic graphs) [2,3] to represent relationships between
hypotheses and the evidence to be explained. Each node represents some
proposition, and the connections explicitly detail the relationships between
different propositions. Furthermore, each node in a WAODAG corresponds
to a logical AND or OR operation on its immediate parents.

An assignment of a truth value to each node is considered a proof if
it is consistent with respect to the boolean network and if the items we
wish to explain have been explained, i.e., have been assigned a value
of true. Consequently, each such proof will have an associated cost. The
goal is to find an assignment which has minimal cost (see Fig. 1). How-
ever, it has been shown that this problem is NP-hard [3]. NP-hardness
is, of course, a worst-case complexity measure. One might nevertheless
hope that a technique could be found which works well on the prob-
lems which come up in practice. Unfortunately, the current approaches
show exponential growth in practice as well as in theory. These current
approaches to finding the best proof have centered around using a best-
first search technique and expanding partial proofs to search for the best
proof [2].

In this paper, we present an approach that uses linear constraints to
represent causal relationships. Each node in a WAODAG is treated as a

4 E. Santos Jr

Fig. 2. A simpler WAODAG. The AND-node house-quiet is the observation. The nodes
no-shows, blackout, and bad-songs are the hypotheses with associated costs 6, 7, and 3, re-

spectively.

variable and constraints between nodes are represented by linear inequalities.
Linear programming techniques are then used to minimize a cost function
associated with the WAODAG. This results in a minimal cost proof for the
original problem. Occasionally, since we model true and false values with
"1" and "0", straight linear programming techniques may not arrive at the
proper solution. We thus need to augment our approach. Although the initial
solution may not be 0-1, we can use the bounding information it provides
in an incremental branch-and-bound search which will guarantee a minimal
cost proof. The experimental results (see Section 4) show however that
the branch-and-bound is rarely required. Indeed, as opposed to the current
search techniques, our linear programming technique shows expected-case
polynomial growth rate on typical problems.

In Section 2, we present our formulation of cost-based abduction in terms
of linear constraints and show that by working with these constraints, we
can effectively determine the minimal cost proof. In Section 3, we describe
the branch-and-bound algorithm which occasionally augments our linear
constraint system. In Section 4, we describe and analyze the experimental
results of our linear constraint satisfaction approach in comparison to ex-
isting search heuristics. Finally, in Section 6, we present some concluding
thoughts and discuss some future research problems.

2. Cost-based abduction and linear constraints

We now formalize the cost-based abduction problem:

Notation. • denotes the set of real numbers.

A linear constraint satisfaction approach to cost-based abduction 5

Definition 2.1. A WAODAG 1 is a 4-tuple (G,c,r ,S) , where:
(1) G is a directed acyclic graph, G = (V, E) ;
(2) c is a function from V x {true, false} to R, called the cost function;
(3) r is a function from V to {AND, OR}, called the label; a node labeled

AND is called a n AND-node, etc.;
(4) S is a subset of nodes in V called the evidence nodes. 2

Notation. Vn is the set of all nodes in V with indegree 0. The nodes in VH
are also called the hypothesis nodes.

Clearly, an explanation is the same as a proof for cost-based abduction.
We formally define a proof for a set of observations as an assignment of
truth values to the different propositions in the knowledge base such that
the observations are true and the assignments are consistent with respect to
the boolean relationships between the propositions.

In Fig. 2, assume that house-quiet = true is the observation to be ex-
plained. One possible proof would be the following assignment of truth
values: {house-quiet, radio-off, bad-songs, tv-off, no-shows} are assigned true
and {no-one-home} is assigned false. A second possibility is to assign all of
them to true. And as a third possibility, we can assign {house-quiet, radio-off,
tv-off, no-one-home} to true and {bad-songs, no-shows} to false. As we can
easily see, all three assignments are internally consistent with the boolean
relationships and assign house-quiet to true.

More formally, we define this as follows:

Definition 2.2. A truth assignment for a WAODAG W -~ (G , c , r , S) where
G = (V,E) is a function e from V to {true, false}. We say that such a
function is valid iff (if and only if) the following conditions hold:

(1) For all AND-nodes q, e(q) = true i f f fo r all nodes p such that (p,q)
is an edge in E, e (p) = true.

(2) For all OR-nodes q, e(q) = true iff there exists a node p such that
(p, q) is an edge in E and e (p) = true.

Furthermore, we say that e is an explanation iff e is valid and for each node
q in S, e(q) = true.

In propositional logic, A A B ~ C corresponds to "If A and B are
both true, then C is true". As we mentioned earlier, simply assuming the
antecedent C is typically unsatisfactory as an explanation for C. Note that
our definition of valid explanations disallows the case where C is true but

l Slight generalization of Charniak and Shimony [3]
2S represents the set of observations to be explained. Without loss of generality, we only

consider positive evidence.

6 E. Santos Jr

both A and B are false. However, we can straightforwardly model the ability
to simply assume C if necessary.

Once we have the different possible explanations for some observation,
we must associate a cost with each one to impose some order reflecting the
goodness of proofs. As we mentioned earlier, the cost of a proof is simply
the sum of the individual costs of the hypotheses assumed. 3

Definition 2.3. We define the cost of an explanation e for W = (G,c,r,S)
where G = (V, E) as

C(e) = ~--~ c (q ,e (q)) . (1)
qEV

An explanation e which minimizes C is called a best explanation for W.

From (1), we find that our three proofs above have costs 9, 16, and 7,
respectively. Of the three our best proof is the third one with the cost of 7.

Now we show how to formulate our cost-based abduction as a linear
constraint system.

Definition 2.4. A linear constraint system is a 3-tuple (F, I, ~) where F is a
finite set of variables, I is a finite set of linear inequalities based on F, and

is a function from F × {true, false} to R.

Notation. For each node q in V, let Dq = {p I (P, q) is an edge in E} be
the parents of q. IDql is the cardinality of Dq.

From Definition 2.2, for a truth assignment to be a possible explanation,
we must guarantee the internal consistency of the assignments required in
the definition. This internal consistency is the same consistency required in
boolean combinational circuits. We must guarantee the correct assignment
of input values versus output values of each AND/OR-node in the WAODAG.

Like values in boolean circuits, we can use numerical assignments instead
of true or false. In general, we use 1 for true and 0 for false. By taking this
viewpoint, we can now consider the internal consistency as some form of
mathematical formulae to be satisfied where each node is actually a variable
in the equation. Our purpose is now to show how these equations can be
derived and then prove that they guarantee the internal consistency required.

We begin our derivation with the simplest of the requirements. Let q be
an evidence node in our WAODAG. Associate the variable xq with q. Since q

3Although we have only discussed having costs associated with hypotheses, our approach
permits costs to be associated with any node.

.4 linear constraint satisfaction approach to cost-based abduction 7

is an evidence node, any explanation for q must assign q to true. This can
be modeled by the equation

Xq=l.

Next, let q be an AND-node with parents Dq. We have the following: q is
true i f f p is true for all nodes p in Dq. Symmetrically, q is false i f f there exists
a p in Dq such that p is false. We can accomplish this with the equations
(2) and (3):

xq ~< xp for each p ~ Dq, (2)

which guarantees that

(1) q being t r u e forces all p in Dq to be true, and
(2) some p in Dq being false forces q to be false;

g o - I D q l + 1 ~ xq (3)
p~Dq

guaranteeing that

(1) q being false forces some p in Dq to be false, and
(2) if all p in Dq are true, then q must be true.

Note that at this time we are assuming that our variables may only take
values of 0 or 1 although there is no upper or lower bound on the results
of evaluating either side of the equation. For example, let Dq = {a, b, c, d},
xa = Xb = x¢ = 0 and Xd = 1. This implies that the summation side of
equation 3 above yields -2!

Finally, the OR-node can be modeled with the following equations:

pED¢

xq >>. xp for e a c h p e D q ,

where q is an OR-node with parents Dq.
Together, these equations will guarantee the internal consistency needed

for a truth assignment to be an explanation. Also, any explanation is guar-
anteed to satisfy this set. We formalize our construction as follows:

Definition 2.5. Given a WAODAG W ---- (G , c , r , S) where G = (V,E) , we
can construct a linear constraint system L (W) = (F, I, ~,), where:

(1) F is a set of variables indexed by V, i.e., F = {xq I q E V};
(2) ~/(Xq, X) = c (q , X) for all q E V and X E {true, false};

8 E. Santos Jr

(3) I is the collection of all inequalities of the forms given below:

Xq ~ Xp E I for each p E Dq, if r(q) = AND, (4)

~ p e D q X p - l D q l + 1 < ~ X q C I , i f r (q) =AND, (5)

~p~o~ xp >i Xq E I, if r(q) = OR, (6)

Xq > I x p 6 I for e a c h p E D q , i f r (q) =OR. (7)

We say that L (W) is induced by W. Furthermore, by including the addi-
tional constraints:

Xq = 1, i f q E S (8)

we say that the resulting linear constraint system is induced evidentially by
W and is denoted by LE (W).

Definition 2.6. A variable assignment for a linear constraint system L =
(F, I, ~,) is a function s from F to R. Furthermore,

(1) if the range o f s is {0, 1}, then s is a 0-1 assignment;
(2) i f s satisfies all the constraints in I, then s is a solution for L;
(3) if s is a solution for L and is a 0-1 assignment, then s is a 0-1

solution for L.

With our formulation of linear constraint systems and variable assign-
ments, we can now prove that 0-1 solutions are equivalent to explanations.
Given a 0-1 assignment s for L (W), we can construct a truth assignment
e for W as follows:

(1) For all q in V, s(xq) = 1 i f f e (q) = true.
(2) For all q in V, s(xq) = 0 i f f e (q) = false.

Conversely, given a truth assignment e for W, we can construct a 0-1
assignment s for L (W).

Notation. e [s] and s [e] denote, respectively, a truth assignment e con-
structed from a 0-1 assignment s, and a 0-1 assignment s constructed from
a truth assignment e.

We can show that all explanations for a given WAODAG W have corre-
sponding 0-1 solutions for LE (W) and vice versa.

Theorem 2.7. I f e is an explanation for W, then s[e] is a 0-1 solution for
L (W) .

A linear constraint satisfaction approach to cost-based abduction 9

(Proofs can be found in Appendix A.)

Corollary 2.8. Let L be constructed from L (W) by eliminating all constraints
of the forms (5) and (7). I f e is an explanation for W, then s[e] is a solution
o f L . 4

Conditions (4) and (6) are called bottom-up constraints since they dictate
the values of variables from the direction of the evidence nodes. Symmet-
rically, (5) and (7) are called top-down constraints. As we shall see later
in this section, Corollary 2.8 will demonstrate certain enhancements and
improvements which can be made to our approach.

Theorem 2.9. I f s is a 0-1 solution for L E (W) , then e[s] is an explanation
for W.

From Theorems 2.7 and 2.9, 0-1 solutions for linear constraint systems are
the counterparts of explanations for WAODAGS. By augmenting a WAODAG
induced linear constraint system with a cost function, the notion of the cost
of an explanation for a WAODAG can be transformed into the notion of the
cost of a 0-1 solut ion for the linear constraint system.

To complete the derivation, we must also be able to compute the costs
associated with each proof. We can do this as follows:

Definition 2.10. Given a linear constraint system L (W) = (F, I, ~) induced
(evidentially) by a WAODAG W, we construct a function OL from variable
assignments to R as follows:

OL(S) = y ~ { S (X q) ~ (X q , t r u e) q- (l - -S (Xq))~ (Xq , fa l se) } . (9)
xqEF

OL is called the objective function of L (W).

Definition 2.11. An optimal 0-1 solution for a linear constraint system
L (W) = (F,I, q/) induced (evidentially) by a WAODAG W is a 0-1 so-
lution which minimizes Or,.

As we can clearly see, (9) is identical to (1). From Theorems 2.7 and 2.9
and the relationship between node assignments and variable assignments,
an optimal 0-1 solution in LE (W) is a best explanation for W and vice
versa.

Taking the set of linear inequalities I and the objective function OL,
we observe that we have the elements known in operations research as a

4L is later defined as a WAODAG-semi-induced linear constraint system.

10 E. Santos Jr

linear program [11,12,18]. The goal of a linear program is to minimize
an objective function according to some set of linear constraints. Highly
efficient methods such as the simplex method 5 and Karmarkar's projective
scaling algorithm are used to solve linear programs [11,12,18]. Empirical
studies have shown that the average running time of the simplex method is
roughly linear with respect to the number of constraints and the number of
variables in the linear program [12].

Proposition 2.12. Given a WAODAG W = (G,c ,r ,S) , where G = (V,E), i f
L E (W) = (I ' , I , ~) is induced evidentially from W, then I I I = IEL + I V -
vul + ISl.

Although our linear constraint systems seem similar in nature to linear
programs, linear programs cannot make restrictions which cannot be mod-
eled by linear inequalities. Thus, solutions which minimize the objective
function may not be strictly 0 and 1. However, if the solution is a 0-1
solution, then the best explanation is found. (From our experiments, as we
shall see later, the optimal solutions for many of these linear programs will
in fact be 0-1 solutions. Thus, the best explanation can be found by just
using the straight simplex methods on the problems.) If the solution is not
a 0-1 solution, the value for the objective function generated by such a
solution still provides an excellent lower bound to the cost of an optimal
0-1 solution. This lower bound will be used to direct our search for an
optimal 0-1 solution as we shall see below.

For computing the lower bound, WAODAG induced linear programs are
well suited for the simplex method. The constraint matrices for these types
of linear programs are extremely sparse and consist of only three values:
-1 , 0, 1. Furthermore, detailed knowledge of the problem structure can
be exploited to even further improve performance. The following theorem
shows that the number of linear inequalities can be reduced under certain
conditions.

Definition 2.13. Given a W A O D A G W = (G,c , r ,S) , where G = (V,E), we
can construct a linear constraint system L (W) = (F, I, ~u) where:

(1) F is a set of variables indexed by V, i.e., F = {Xq I q E V};
(2) ~(xq, X) = c (q , X) for all q E V and X E {true, false};
(3) I is the collection of all inequalities of the forms given below:

Xq ~ Xp E I for each p E D a, if r(q) = AND,

Y~ueoq xp >i xq E I, if r(q) = OR.

(4)

(6)

5For a quick overview of the simplex method, see [8]

A linear constraint satisfaction approach to cost-based abduction 11

We say that L (W) is semi-induced by W. Furthermore, by including the
additional constraints:

xq = 1, i f q E S (8)

we say that the resulting linear constraint system is semi-induced evidentially
by W and is denoted by LE (W). (Properties associated with induced linear
constraint systems are easily generalizable to semi-induced ones.)

A semi-induced linear constraint system is simply an induced linear con-
straint system lacking top-down constraints. From Corollary 2.8, the set of
possible solutions for LE (W) is a superset of the set of possible explanations
for W.

Theorem 2.14. Let W = (G ,c , r , S) be a WAODAG, where G = (V ,E) . An
optimal 0-1 solution for LE(W) can be transformed into a best explanation
for W in O(IEI) steps i f c(p, false) <<. c(p, t rue)for all nodes p in V.

For transformation, see the proof of Theorem 2.14 in Appendix A. In
general, transforming a 0-1 optimal solution for LE (W) requires at most
2[E[steps.

Corollary 2.15. Let W = (G ,c , r , S) be a WAODAG, where G = (V ,E) . An
optimal O- 1 solution for]-,E (W) is a best explanation for W i f c (p, false) <
c (p, true) for all nodes p in V.

From the above theorem, a best explanation for W can be found by
solving a smaller linear program.

Intuitively, we note that the information required to find an optimal 0-
1 solution is propagated from true assignments which originate from the
evidence nodes and thus, results in a bottom-up fashion of processing. In
terms of our linear constraint system, constraints need only be sensitive to
the information from one direction, namely from the evidence nodes.

Proposition 2.16. Given a WAODAG W = (G,c , r ,S) , where G = (V ,E) , i f
LE(W) = (F, I , ¢/) is semi-induced evidentially by W, then

I11 = [{(p,q) ~ E l r (p) = AND}I + IVoI + ISI,

where Vo is the subset o f all nodes in V which are labeled OR and have
nonzero outdegree.

Many other types of improvements may also be employed. Some arise
from the intimate knowledge of our domain while others are techniques
used for general linear programming problems.

12 E. Santos Jr

Fig. 3. In this simple WAODAG, the OR-node house-quiet is the observed evidence, blackout
is the only hypothesis available.

Although only WAODAGS are used in the preceding discussions, one can
easily generalize our linear constraint satisfaction approach to arbitrary
boolean gate-only networks.

3. Branch-and-bound

As we mentioned in the previous section, the solution to a WAODAG
induced linear program need not consist strictly of 0s and ls. For example,
consider the simple WAODAG in Fig. 3. (Note that we will use the terms
linear constraint systems and linear programs interchangeably throughout
this section.) From this WAODAG, the following linear program is generated
from our semi-induced linear constraint system L = (F, I, ¢/):

H = l ,
H < ~ R + T ,
B>~ R,
B>~ T,
0 <, H , R , T , B <~ 1,

and has objective function:

OL(S) = s (B) q / (B , t rue)+ (1 - s (B)) v (B , false),

where H, R, T, B E F respectively stand for house-quiet, radio-off, w-off, and
blackout. Furthermore, assume 9,(B, false) = 0 and v (B , t rue)> 0.

We can easily show that the solution which minimizes the objective
function is as follows: H = 1, R = 0.5, T = 0.5, and B = 0.5 with
OL(s) = ¢/(B, true)/2. We call B a shared node in our WAODAG. An OR-
node such as H with assigned value strictly greater than its parents is called
a divide node. (It is easy to show that either an OR-node is a divide node,
or that all of its parents are 0 or the same value as the OR-node.)

Looking closely at Fig. 3, we could easily remedy this problem by in-
troducing the constraint house-quiet ~< blackout. This new constraint reflects

A linear constraint satisfaction approach to cost-based abduction 13

the fact that the value for house-quiet is ultimately determined by blackout.
Simple patches like this one could be used to prevent this type of split node
problem. However, most are nontrivial to identify and repair.

With small linear programs like the one above, using a brute-force tech-
nique of simply trying each possible assignment maybe feasible. Of course,
the run-time grows exponentially with respect to the size of the problem. 6

The technique to be presented avoids the necessity of searching the entire
solution space by using the lower bound computed by the linear program.
This is a standard technique used in many domains to speed up processing
time.

The basic idea is as follows: To find an optimal 0-1 solution, we solve
a sequence of linear programs. This sequence can be represented by a tree
where each node in the tree is identified with a linear program that is
derived from the linear programs on the path leading to the root of the
tree. The root of the tree is identified with the linear program induced by
our WAODAG. The linear programs along the nodes of the tree are generated
using the following schema: Consider so, the optimal solution to our initial
linear program denoted lp 0. If So is a 0-1 solution, then we are finished.
Otherwise, we choose some non-integral variable Xq in So and define two
new problems lpl and lp2 as descendants of lp 0. lp 1 is identical to lP0 except
for the additional constraint xq = 1, and lP2 is identical to lPo except for the
additional constraint Xq = 0. Note that the two new problems do not have
So as their optimal solutions. Since we are looking for a 0-1 assignment, the
optimal 0-1 solution must satisfy one of the additional constraints. The two
new nodes just defined are called active nodes and the variable Xq is called
the branching variable.

Next, we choose one of the problems identified with an active node and
attempt to solve it. It is not necessary to run a complete simplex method
on the linear program. Using methods such as the dual simplex algorithm
[12,18], information is used in an incremental manner from other runs
resulting in a quick and efficient computation. If the optimal solution is not
a 0-1 solution, then two new problems are defined based on the current
linear program. These new problems contain all the constraints of the parent
problem plus the appropriate additional one.

When a 0-1 solution is found for some active node, the value of its
objective function is compared against the current best. If the cost of the
new solution is better than the current best, it is then used to prune those
active nodes whose computed lower bounds exceed this value. This solution
also now becomes the current best solution.

Branching continues in this manner until there are no active nodes in the

6See integer programming techniques [11,12,18]

14 E. Santos Jr

tree. At the end, the current best solution is guaranteed to be the optimal
0-1 solution.

This technique is generally classified as a branch-and-bound technique in
the area of integer linear programming [12,18]. Also, it can be applied to
any linear constraint system regardless of whether or not they are WAODAG
induced.

Notation. We denote a linear program by an ordered pair (I, 0) , where I
is a set of linear constraints and 0 is an objective function.

Algorithm 3.1. Given a linear constraint system L =
optimal 0-1 solution.

(1)
(2)

(3)
(4)
(5)
(6)

(7)

(F , I ,q /) , find its

(8)
(9)

(10)
(11)
(12)

(13)
(14)

Initialization. Set CurrentBest := 0 and ActiveNodes := {(I, OL)}.
If ActiveNodes = 0 then go to step (14). Otherwise, let lp be some
linear program in ActiveNodes.
ActiveNodes := ActiveNodes- {lp}.
Compute the optimal solution s °pt for lp using simplex, etc.
If s °pt is a 0-1 solution, then go to step (12).
Bound. If CurrentBest ~ 0 and OL (s °pt) > OL (CurrentBest), then go
to step (2).
Branch. Choose some variable Xq in lp whose value in s °pt is non-
integer.
Set 1 1 : = I U { x q = 0 } a n d 1 2 : = I U { x q = 1}.
Create two new linear programs lp I : = (I1, OL) and lP2 : = (•2, OK).
ActiveNodes : = ActiveNodes U {lPl , lp2}.
Go to step (2).
0-1 solution. If CurrentBest = 0 or OL (s °pt) < OL (CurrentBest), then
set CurrentBest : = s °pt and prune ActiveNodes using CurrentBest.
Go to step (2).
Solution. Print CurrentBest.

To solve Fig. 3, we choose tv-off to be our first branching variable.
Following Algorithm 3.1 above, we generate two new linear programs:

L I : H = 1, L2: H = 1,
H <~ R + T , H <~ R + T ,
B > ~ R , B > ~ R ,
B>>. T, B>_. T,
0 <<. H , R , T , B <~ 1, 0 <<. H , R , T , B ~ 1,
T = 0 , T = 1,

both with objective function:

OL(s) = s (B) ~ (B , true) + (1 - s (B))~ (B , false).

A linear constraint satisfaction approach to cost-based abduction 15

We first note that tv-off is now a fixed value in both LI and L2. Since the
original optimal value of tv-off was 0.5, both L1 and L 2 n o w exclude this
possibility which effectively eliminates the original optimal solution from
their respective feasible solutions space. From simple observation, we find
that the optimal solutions for L1 and L2 are {H = R = B = 1, T = 0} for
L1 and {H = T = B = 1,R = 0} for L2. The cost for both assignments
is ~,(B, true). We can easily show that both assignments are optimal 0-1
solutions.

In this algorithm, two points were left deliberately vague: the choice of
the next active node and the choice of branching variable. Several different
options exist for both.

For the choice of the next active node, we have the following:

NI: depth-first search of the branch-and-bound tree;
N2: breadth-first search of the branch-and-bound tree;
N3: choose the active node whose parent node has the best lower bound;
N4: choose the active node whose parent's solution s °pt is closest to a 0-1

solution according to

min{s °pt (xq), (1 - s °pt (xq)}.
qElp~

For the choice of the next branching variable:

V 1. choose only variables corresponding to hypotheses nodes since a 0-1
assignment to these variables guarantees a 0-1 assignment throughout
the remaining variables;

V2. order the choice of variables as shared nodes, then divide nodes, then
hypothesis nodes, and so on;

V3. choose the variable xq which minimizes

{min{s °pt (xq), (1 - s Opt (Xq)) }};

V4. choose the variable xq which maximizes

{min{s °pt (xq), (1 - s °pt (xq))}};

V5. choose the variable which has maximum associated cost;
V6. use any combination of the above.

Obviously, many other techniques exist for making our choices, some
based on the knowledge of our problem and others based on general tech-
niques. Combinations of active node heuristics N1 and N3 together with
branching variable heuristics V2 and V3 seem most promising. 7

7Techniques VI and V2 seem to work best when values can propagate in a top-down
fashion. Thus, using the induced linear constraint system as opposed to the semi-induced linear
constraint system is desired.

16 E. Santos Jr

Finally, since the success of branch-and-bound techniques depends on the
ability to prune the active nodes early and as many as possible, we observe
that pruning occurs whenever we have a 0-1 solution for the linear program.
Although not every linear program results in a 0-1 solution, it is possible
to build a 0-1 solution from the non-integer optimal solution. In fact, the
construction is fairly straightforward and computationally cheap.

Theorem 3.2. Let s be the optimal solution of some WAODAG-(semi-)induced
linear program. Construct a variable assignment s' f rom s by changing all
nonzero values in s to 1. s' is a 0-1 solution for the (semi-)induced linear
constraint system.

(For intuitions on why this theorem holds, see the proof in Appendix A.)
For both WAODAG-induced as well as semi-induced linear constraint sys-

tems L, we consider the following construction from s: s' is constructed
from s by changing all nonzero hypothesis node values in s to 1. Now,
enforcing the boolean gate-like properties of the WAODAG, we propagate the
boolean values from the hypothesis nodes up this boolean graph.

Theorem 3.3. s' constructed from s above is a O-1 solution for L.

Proof. Follows from Theorems 2.7 and 2.9. []

4. Experimental results

We performed two experiments to measure the efficiency of our linear
constraint satisfaction approach. The first involves a real application of
our technique to solve cost-based abduction problems created by the story
understanding system WIMP [6,7]. This allows us to make a comparison
against the search-style heuristic described in [2] to solve these graphs. Our
second experiment involves testing our approach on randomly generated
WAODAGS as a gauge on how well the technique applies to the general class
of WAODAGS. Also, WAODAGS larger than those found in the first experiment
are used.

For both experiments, we employed active node method N 1 and branching
variable technique V3 above.

Experiment 1: WIMP WAODAGS

WIMP is a natural language story comprehension system for parsing and
understanding written English sentences [6,7]. It uses belief networks to
perform the abductive inference tasks necessary to solve problems like

A linear constraint satisfaction approach to cost-based abduction 17

pronoun reference and word-sense disambiguation. The belief networks can
then bc transforrncd into equivalent cost-based abductions problems as
shown in [3].

The algorithm for determining the minimal cost proof in [2] is based on
a best-first search of the WAODAG. The basic idea is that one starts with
the partial proof consisting only of the evidence nodes in the WAODAG and
then creating alternative partial proofs. 8 In each iteration, a partial proof
is chosen to be expanded. It is cxpandcd by adding some new nodcs and
edges to the existing partial proof which takcs into consideration how one
of its goals can be achieved locally according to the currcnt partial proof
and nearby nodes. This continues until all the goals (such as cvidcncc) are
satisfied and results in a minimal cost proof. How this is actually donc is
outlined in [3].
Naturally, the success of this algorithm depends on having a good heuris-

tic function for deciding which partial proof should be worked on next.
Furthermore, the heuristic function must be admissible to guarantee that
the first proof generated is the minimal cost proof. Efficient heuristics have
been difficult to find. Prior to [2] the only basic admissible heuristic that
had been used was cost-so-far in [3,21]. Simply put, the partial proofs are
weighted according to the costs of the hypotheses which they currently con-
tain. The difficulty in the cost-so-far approach is that no estimation on the
"goodness" of the partial proof can be made until hypothesis nodes have
been reached. Recently, a more efficient heuristic was introduced which
used a more sophisticated cost estimator [2]. In brief, the new heuristic
propagates the costs of the hypothesis nodes down the network to give some
estimation of the "goodness" of each partial proof. The admissibility of
this heuristic is guaranteed by the special care it takes in expanding partial
proofs. (For precise details and the admissibility proof of this heuristic, see
[21).

Since the problem of finding the minimal cost explanations is NP-hard,
we are naturally interested in the expected-case growth rates of the heuristic
search method versus our linear constraint systems. Unfortunately, perform-
ing average-case analyses is a rather difficult task. This has certainly been the
case when studying either heuristic search methods or linear programming.
Thus, we are only left with making empirical studies on the two approaches
as the basis for our comparisons. However, this technique is wrought with
pitfalls unless we are extremely careful. If we employ a floating-point op-
timization in our linear programming implementation which enhances the
efficiency of our approach, does this imply that our linear constraint ap-
proach has improved relative to the search heuristic? Typically, if the two

aA partial proof is a subgraph of the WAODAG.

18 E. Santos Jr

methods were somewhat more isomorphic, a similar optimization can also
be applied to the other method. However, as we can easily see, the floating-
point optimization is not very useful to the heuristic search method.

Our goal is to compare the two methods above without being influenced by
"approach-independent" factors, such as compiler optimizations, machine
type, etc., which can directly alter the empirical results. Often, this can be
done by comparing approaches at a more abstract level. For example, two
search routines could be compared by measuring how many search steps
each took, independent of the time for each step. Unfortunately, the radical
differences between the two approaches we are comparing defeats us. There
is no obvious common ground for comparison except the most obvious
one--how long the systems took. However, suppose that given a collection
of ordered pairs of the form

(WAODAG complexity, CPU usage),

we attempt to perform a least-squares fit of the data on the function t =
e a+bx, where t is the CPU seconds used and x is the complexity of the
WAODAG to be solved. We can now compare the relative efficiency of each
approach by comparing the constant b for both fits. In this way, we hope
to eliminate the approach-independent factors.

There are several complexity measures available for WAODAGS. We chose
as our measure the number of edges in the WAODAG as it seemed to us
to have the most direct impact on both the graph search heuristic and our
linear constraints approach. An expansion of a partial proof for the search
heuristic necessitates the traversal of the graph along its edges. For our
linear constraint systems, Proposition 2.12 stipulates that the number of
constraints required to solve a WAODAG is roughly the number of edges in
the WAODAG. 9

In this experiment, 140 WAODAGS generated by WIMP ranging in size from
7 nodes to 158 nodes and from 12 edges to 375 edges were presented to
both approaches. Table 1 summarizes the set of WAODAGS generated by
WIMP for our experiment. Figures 4 and 5 show the semi-logarithmic plot of
our timings for the WIMP heuristic and for our linear constraint satisfaction
approach.

We found that in our linear constraint satisfaction approach, roughly 61%
of the WAODAGS generated by WIMP were solved using only linear program-
ming without resorting to branch-and-bound. Furthermore, the number of
active nodes actually used during branch-and-bound cases were only a small
fraction of the total number of nodes involved. On average for the branch-
and-bound cases alone, the number of active nodes was 6.2% of the nodes

9GeneraUy, the number of edges is some multiple of the number of nodes.

A linear constraint satisfaction approach to cost-based abduction 19

CPU seconds

le+02

5

2

le+O1

5

2

le- t~

5

2

le-Ol

5

2

le-02

5

• r | "

m mm

:[,.

• m

• | •

0.00 100.00 200.00 300.00
of Edges

Fig. 4. Semi-logarithmic plot of WIMP heuristic timings.

(~U Seconds

5

2

le.,,.O0

5

2

le-Ol

5

2

1¢-02

|

mmm

i

- e "

[E l ".
,.'.r

"_g
I l l

I m

of Edges
0.00 I00.00 200.00 300.00

Fi& 5. Semi-logarithmic plot of linear constraint satisfaction timings.

20 E. Santos Jr

Table 1
WIMP WAODAG summary.

Min
Max
Average
Median
Total

Nodes Edges Hypotheses OR-nodes

7 12 2 3
158 375 41 59
42.54 93.49 10.88 16.76
34 75 9 14

5955 13089 1523 2346

in the graph, and overall, the average number for all WAODAGS was 2.4%.
Performing a least-squares fit on the timings gives us the following:

WIMP heuristic: e -5"32+0"0245x,

Constraint system: e -3"80+0-0187x,

which serves to verify some of our expectations on the expected growth
rate of our linear constraint satisfaction approach as compared to the search
technique.

Although we have just shown that our approach is better than the search
heuristic found in WlMP, the best exponential fit does not actually describe
our timings very well. Consider again the semi-logarithmic plot of our linear
constraint satisfaction approach in Fig. 5.

As we can clearly see, our linear constraint satisfaction approach actually
exhibits an expected subexponential growth rate. By further attempting to
fit our data to ax o, we get 0.0001371x t-6484 as our expected growth curve.
To show that the polynomial fit is better, we compare the two least square
error fits, that is,

~ l Z e - F(e)l 2
eEA

where A is the set of all WAODAGS, Xe is the amount of CPU seconds
taken to solve WAODAG e and F (e) is the amount of time predicted by
the least-squares fit. Taking the error of the exponential fit and dividing it
by the error of the polynomial fit, we roughly find a 10000% improvement
of the polynomial fit over the exponential. When we attempted to perform
a polynomial fit on the search heuristic, we found that the error actually
tripled. Although the search heuristic is slightly faster than our approach
on the very small (in terms of edges) WAODAGS, our approach seems to be
quite fast and practical at solving all the WAODAGS generated by WIMP.

Experiment 2: random WAODAGs

Our purpose in this experiment is to further test the efficiency of our linear
constraint satisfaction approach when faced with more general and larger

A linear constraint satisfaction approach to cost-based abduction

Table 2
Random WAODAG summary.

Min
Max
Average
Median
Total

Nodes Edges Hypotheses OR-nodes

36 39 8 7
387 699 154 135
224.2 328.4 74.2 75.6
225 323 76 79

22424 32844 7423 7559

21

WAODAGS than those generated by WIMP. In particular, we are interested
in whether the expected subexponential growth rate exhibited for the WIMP
generated WAODAGS remains to be the case for these randomly generated
graphs. We also considered testing the search heuristic on these graphs.
However, the explosive growth rate of the heuristic made it infeasible to
attempt these much larger graphs.

100 WAODAGS were generated ranging from 36 to 387 nodes and from
39 to 699 edges. They were generated randomly to by first determining the
number of nodes n from 1 to 400 and then instantiating said nodes. Next,
the number of edges from n to 800 to be included in this graph is determined
and the edges were randomly instantiated between two nodes, l l Finally, hy-
pothesis nodes are identified and are arbitrarily assigned some non-negative
cost. Table 2 summarizes the set of randomly generated WAODAGS fo r this
experiment.

We found that 97% of the randomly generated WAODAGS were solved
using only linear programming without branch-and-bound. 12 Performing a
least-squares exponential fit gives us e -5-49+0'0614x.

Consider the logarithmic plot of our linear constraint satisfaction approach
in Fig. 6. Again, we can clearly see that our linear constraint satisfaction ap-
proach actually exhibits an expected subexponential growth rate. By further
attempting to fit our data to a x b, we get 0.0079188x 2"°3°8 as our growth
curve. Again, the error fit actually improved roughly 2300%.

5. Conclusions

From the two experiments above, our linear constraint satisfaction ap-
proach seems very promising. A very surprising result is that the optimal
solution found for the linear program without branch-and-bound was either

lOBy random, we mean uniform distribution.
l lTo guarantee that our resulting graph is acyclic, we initially imposed a random topological

ordering on the nodes.
12We are currently investigating why this differs so much from WIMP-generated WAODAGs.

22 E. Santos Jr

CPU Seconds

2

1¢+01

5

2 am
;o

le+O0 ".

d. a
5 ,."

2

le-O1

m

, t , I

o
a ~ i -

%-

of Edges
200.00 400.00 600.00

Fig. 6. Logar i thmic plot o f l inear cons t ra in t sa t isfact ion t imings on r a n d o m W A O D A G s .

already a 0-1 optimal solution or a very close approximation as indicated
by the relatively small number of active nodes used. Furthermore, branch-
and-bound can be performed incrementally by using methods such as the
dual simplex algorithm. Thus, the additional computational effort required
beyond solving the initial linear program was rather minimal.

Instinctively, we would have guessed that the bulk of our problems would
have centered around the branch-and-bound process since it seems unlikely
that our linear program should have an optimal solution which is also
integral. Why they are so often integral is a puzzling problem. We are
currently studying this phenomenon, however, it seems to be a very difficult
problem. We suspect that abduction may fall into a class of problems
considered to be "easy" integer programming problems. There seems to
be a link between abduction and set-covering problems and it has been
frequently observed that matching and set covering problems on graphs are
very amenable to linear programming formulations in that they very often
have integral optimal solutions [4].

As for the association between abduction and set-covering, it is admittedly
a weak one. We offer only two suggestive points. First, the early abduction
model for medical diagnoses presented in [14] is such a set-covering ap-
proach. Cost-based abduction is a generalization of [14]. Second, in the
original formulation of cost-based abduction presented in [3], the proof

A linear constraint satisfaction approach to cost-based abduction 23

of NP-completeness was accomplished by transforming the vertex covering
problem into cost-based abduction.

6. Further research

In conclusion, the linear constraint satisfaction approach can be used to
solve the minimum cost-based abduction problem in an efficient manner
superior to existing search-style heuristics. The formalism of linear constraint
satisfaction provided a natural framework for finding minimal cost proofs.

It seems likely that our approach can be extended to model other prob-
lems in explanation and reasoning. One of the extensions being currently
explored involves generating the other alternative explanations. In abductive
explanation, having alternative explanations is often useful and sometimes
necessary. Having the second best, third best, and so on, can provide a useful
gauge on the quality of the best explanation. (Details concerning the gener-
ation of alternative explanations can be found in [17].) Another extension
being explored involves modeling belief revision in Bayesian networks [13]
using our linear constraint systems [17]. Finally, other extensions currently
being incorporated into our approach include handling partial explanations.

Appendix A. Proofs

Proof of Theorem 2.7. Assume that s[e] is not a solution of L (W) =
(F, I, ¥) . This implies that there exists a constraint Q in I which is violated.
(For notational convenience, we will denote s [e] (xp) = a by xp = a.)

Case 1: Q is of the form xp <~ Xq. Since s[e] is a 0-1 assignment, xp = 1
and xq = 0. From (4) and (7), we get can conclude that either r (p) = AND
or r(q) = OR. If r(p) = AND, then q is a parent o f p and xq must equal 1
in s[e]. If r(p) = OR, then p is a child of q and Xp must equal 0 in s[e].
Since neither is the case, Q cannot be violated.

Case 2: Q is of the form

X q - [D [+ 1 ~<xp,
qED

where D is some set of nodes. For Q to be violated,

y'~ xq - xp > IDI - 1.
qED

This implies that xp = 0 and for all q ~ D, xq = 1. From (5), we can
conclude that r (p) = AND and D = Dp. Since r (p) is an AND node, if xp

24 E. Santos Jr

equals 0, then all the parents of p must also equal zero. Thus, Q cannot be

violated.
Case 3: Q is of the form

Z Xq ~ Xp,
qED

where D is some set of nodes. This implies that xp = 1 and for all q E D,
xq = 0. From (6), we conclude that r(p) = OR and D = Dp. Since r(p)
is an OR node, Xp equals 1 implies that there exists an q E Dp such that
xq = 1. Thus, Q cannot be violated.

Cases 1 to 3 cover every type of violations of the linear constraint system
possible. Therefore, e cannot be an explanation for W. []

Proof of Theorem 2.9. Assume e[s] is not an explanation for W. This
implies that one or more of the following conditions hold: (For notational
convenience, we will denote s(xp) = a by xp = a and e[s] by e.)

(a) There exists an AND-node p in W such that e(p) = true and there
exists a q E Dp such that e (q) = false.

(b) There exists an AND-node p in W such that e(p) = false and for all

q E Dp, e(q) = true.
(c) There exists an OR-node p in W such that e(p) = true and for all

q E Dp, e(q) = false.
(d) There exists an OR-node p in W such that e(p) = false and there

exists a q E Dp such that e (q) = true.
(e) There exists an evidence node p in S such that e(p) = false.

Case 1. From
I. Since, xp = 1

Case 2. From
does not hold.

Case 3. From
does not hold.

Case 4. From
does not hold.

Case 5. From
not hold.

(4), r(p) = AND implies that the constraint Xp ~ Xq is in
and xq = 0, condition (a) does not hold.
(5), r(p) = AND implies that xp >t 1. Thus, condition (b)

(6), r(p) = OR implies that xp ~ 0. Thus, condition (c)

(7), r(p) = OR implies that xp >i 1. Thus, condition (d)

(8), p E S implies that xp = 1. Thus, condition (e) does

Therefore, s is not a 0 - i solution in LE (W). []

Before we can prove the next theorem, we present the definition of
AND-DAGs.

A linear constraint satisfaction approach to cost-based abduction 25

Definition A.1. An AND-DAG is a WAODAG whose nodes which are labeled OR
have at most outdegree one. Given a WAODAG W = (G , c , r , S) , construct
W ' = (G ' , c ' , r ' , S) from W by removing all but one of the parent from
every OR-node. Now, remove from W', all nodes and associated edges which
are not reachable from any evidence node in S. The resulting AND-DAG W t
is said to be induced by W.

Proposition A.2. Let W ' be an AND-DAG induced by W. For any truth as-

s ignment e, i f e (p) = true for all nodes p in W' , then e is an explanation

for W.

Proof of Theorem 2.14. Let s be any optimal 0-1 solution for LE(W).
Assume e [s] is not an explanation for W. This implies that one or more
of the following conditions hold: (For notational convenience, let e denote
e[s] .)

(a) There exists an AND-node p in W such that e (p) = true and there
exists a q E Dp such that e (q) = false.

(b) There exists an AND-node p in W such that e (p) = false and for all
q E Dp, e(q) = true.

(c) There exists an OR-node p in W such that e (p) = true and for all
q E Dp, e (q) = false.

(d) There exists an OR-node p in W such that e (p) = false and there
exists a q E Dp such that e (q) = true.

(e) There exists an evidence node p in S such that e (p) = false.

From Definition 2.13, conditions (a), (c), and (e) cannot hold. We now
only consider conditions (b) and (d).

We can view the process of finding a suitable 0-1 solution as the prop-
agation of information from evidence nodes through AND/OR-nodes to hy-
pothesis nodes. The remaining conditions, (b) and (d), indicate that zero
assignments do not propagate. Let M be the set of nodes p in W such that
e (p) = false and whose childrens' assignment permits either condition (b)
or (d) to hold. Let M' be the subset of M such that each node in M' does
not have a descendant also in M.

Let p be any node in M' and D~ -1 be the immediate children of node p.
For each q in Dp 1 , one of the following holds:

(i) e (q) = false and r (q) = AND.

(ii) e (q) = false and r (q) = OR.
(iii) e (q) = true and r (q) = OR.

e (q) = true and r (q) = AND cannot both be true since it would violate
the definition of M' . For the third combination, there exists some node
p' # p in Dq such that e(p ') = true.

26 E. Santos Jr

Let WM be the resulting WAODAG obtained by first removing all nodes
and associated edges from W in M and then removing those which are not
reachable from any evidence node in S. We can easily see that any AND-DAG
obtained from W~ is an AND-DAG for W.

Since s is an optimal 0-1 solution for LE(W) and c(q,false) ~< c(q,true)
for any node q, for each hypothesis node p in W but not in WM, e(p)
can be set to false. (It can be easily shown that if e(p) = true, then
c(p, f a l s e) = c(p, true).) Now, by propagating the truth values from the
hypothesis nodes, another optimal 0-1 solution will be generated. This new
solution will be a best explanation for W.

We can easily determine M and the final 0-1 solution in O ([Ew) steps. []

Proof of Theorem 3.2. Assume that s' is not a 0-I solution for the semi-
induced linear constraint system. This implies that there exists a nonzero
variable Xq such that by setting Xq to 1, this violates some constraint Q in
the linear constraint system.

Case 1: Xq <~ xp is violated. Since xq is nonzero, this implies that xp was
also nonzero to begin with. Thus xp would have also been set to 1. Thus,
this constraint is not violated.

Case 2: ~peoq xp >1 xp is violated. Since xq is nonzero, this implies that
some xp where p E Dq is also nonzero. Thus, xp would have also been set
to 1. Thus, this constraint is not violated.

All the cases for constraint violations have been considered. No con-
straint is violated. Contradiction. We can similarly proved this for induced
systems. []

Acknowledgement

This work has been supported by the National Science Foundation under
grant IRI-8911122 and by the Office of Naval Research, under contract
N00014-88-K-0589. This paper extends and improves the earlier work pre-
sented in [15,16]. Special thanks to Eugene Charniak for important pointers
and critical review of this paper. Also, thanks to the anonymous reviewers
whose suggestions improved this paper.

References

[1] D.E. Appelt, A theory of abduction based on model preference, in: Proceedings AAAI
Symposium on Abduction (1990).

[2] E. Charniak and S. Husain, A new admissible heuristic for minimal-cost proofs, in:
Proceedings AAAI-91, Anaheim, CA (1991).

A linear constraint satisfaction approach to cost-based abduction 27

[3] E. Charniak and S.E. Shimony, Probabilistic semantics for cost based abduction, in:
Proceedings AAAI-90, Boston, MA (1990) 106-111.

[4] R.S. Garfinkel and G.L. Nemhauser, Integer Programming (Wiley, New York, 1972).
[5] M.R. Genesereth, The use of design descriptions in automated diagnosis, Artif Intell. 24

(1984) 411-436.
[6] R.P. Goldman, A probabilistic approach to language understanding, Ph.D. Thesis,

Department of Computer Science, Brown University, Providence, RI (1990).
[7] R.P. Goldman and E. Charniak, Probabilistic text understanding, in: Proceedings Third

International Workshop on AI and Statistics, Fort Lauderdale, FL (1991).
[8] F.S. Hillier and G.J. Lieberman, Introduction to Operations Research (Holden-Day, San

Fransisco, CA, 1967).
[9] J.R. Hobbs, M.E. Stickel, P. Martin and D. Edwards, Interpretation as abduction,

in: Proceedings 26th Annual Meeting of the Association for Computational Linguistics,
Buffalo, NY (1988).

[10] H.A. Kautz and J.F. Allen, Generalized plan recognition, in: Proceedings AAAI-86,
Philadelphia, PA (1986).

[11] C. McMillan, Mathematical Programming (Wiley, New York, 1975).
[12] G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, Optimization: Handbooks in

Operations Research and Management Science, Vol. 1 (North-Holland, Amsterdam,
1989).

[13] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann, San Mateo, CA, 1988).

[14] Y. Peng and J.A. Reggia, Plausibility of diagnostic hypothese: the nature of simplicity,
in: Proceedings AAAI-86, Philadelphia, PA (1986).

[15] E. Santos Jr, Cost-based abduction, linear constraint satisfaction, and alternative
explanations, in: Proceedings AAAI-workshop on abduction (1991).

[16] E. Santos Jr, Cost-based abduction and linear constraint satisfaction, Tech. Report CS-
91-13, Department of Computer Science, Brown University, Providence, RI (1991).

[17] E. Santos Jr, On the generation of alternative explanations with implications for belief
revision, in: Proceedings Seventh International Conference on Uncertainty in AI, Los
Angeles, CA (1991).

[18] A. Schrijver, Theory of Linear and Integer Programming (Wiley, New York, 1986).
[19] B. Selman and H.J. Levesque, Abductive and default reasoning: a computational core,

in: Proceedings AAAI-90, Boston, MA (1990) 343-348.
[20] M. Shanahan, Prediction is deduction but explanation is abduction, in: Proceedings

IJCAI-89, Detroit, MI (1989).
[21] M.E. Stickel, A Prolog-like inference system for computing minimum-cost abductive

explanations in natural-language interpretation, Technical Note 451, SRI International,
Menlo Park, CA (1988).

